Module Categories over Pointed Hopf Algebras

نویسنده

  • MARTÍN MOMBELLI
چکیده

We develop some techniques for studying exact module categories over some families of pointed finite-dimensional Hopf algebras. As an application we classify exact module categories over the tensor category of representations of the small quantum groups uq(sl2).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

2 5 N ov 2 00 8 MODULE CATEGORIES OVER POINTED HOPF ALGEBRAS

We develop some techniques to the study of exact module categories over some families of pointed finite-dimensional Hopf algebras. As an application we classify exact module categories over the tensor category of representations of the small quantum groups uq(sl2).

متن کامل

ar X iv : 0 81 1 . 40 90 v 3 [ m at h . Q A ] 2 3 Ju n 20 09 MODULE CATEGORIES OVER POINTED HOPF ALGEBRAS

We develop some techniques for studying exact module categories over some families of pointed finite-dimensional Hopf algebras. As an application we classify exact module categories over the tensor category of representations of the small quantum groups uq(sl2).

متن کامل

Pointed Hopf Algebras over Non-abelian Groups

The class of finite-dimensional pointed Hopf algebras is a field of current active research. The classification of these algebras has seen substantial progress since the development of the so-called “Lifting method” by Andruskiewitsch and Schneider. With this tool, the case in which the group of group-like elements is abelian is almost completed and recent results by these and other authors suc...

متن کامل

Codes as Ideals Over Some Pointed Hopf Algebras

We give a Decomposition Theorem for a family of Hopf algebras containing the well-know family of Taft Hopf algebras. Therefore, those indecomposable codes over this family of algebras (cf. [4]) is an indecomposable code over the studied case. We use properties of Hopf algebras to show that dual (in the module sense) of an ideal code is again an ideal code.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009